The previously discussed filter describes a general-purpose device that can fit in many applications but is not necessarily the optimal solution. This is where application-specific FIR structures come in. Therefore, this post aims to present some of the more popular filter structures used in specialized applications.

When designing VHDL for safety-critical FPGA applications, it’s not enough to write testbenches at best-effort. You have to present proof that the module works as intended and without undesirable side-effects.

Formal verification techniques can help you map a requirement to a test, proving that your VHDL module conforms to the specification. It’s an instrumental tool for verifying healthcare applications or gaining DO-254 certification for airborne FPGA solutions.

Read More »

Text strings in VHDL are generally limited to fixed-length character arrays. That makes sense because VHDL describes hardware, and generic-length strings require dynamic memory.

To define an array of strings, you have to allocate space at compile-time for the highest number of strings you want to store. And even worse, you must decide on the strings’ max length and pad every occurrence to that number of characters. The code below shows an example usage of such a construct.

Read More »

This article examines how we can use configuration constructs to create variants of a module or testbench without maintaining multiple versions of the file. We will also look at other use cases for configuration declarations in VHDL design.

Configurations have been part of the VHDL standard since the first version of the language. But still, many FPGA designers never use them, perhaps because few people understand how configurations work.

I find that unfortunate because it’s really not that complicated.

Read More »

This tutorial teaches you how to set up an automation server on a Virtual Private Server (VPS) using Jenkins, Xilinx Vivado, and the Git / GitHub source-control management (SCM) system.

Jenkins can be a valuable tool also for FPGA teams. Automating tasks can save your company time and improve the quality of your code. By using automatic build triggers and automated job pipelines, fewer coding errors will go unnoticed.